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Abstract

We investigate how the criteria for two prototype instabilities in one-dimensional pattern-

forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability,

change as one goes from a continuous bifurcation, to a spatially periodic or spatially and/or

time periodic state, to the corresponding weakly inverted, i.e. hysteretic, cases. We also

give the generalization to two-dimensional patterns in systems with anisotropy as they

arise for example for hydrodynamic instabilities in nematic liquid crystals.

PACS classification: 47.20.Ky, 05.70.Ln, 47.25.Qv



1. Introduction

The question of which wavelengths are linearly stable in a system showing spatially

periodic states has been of interest since about 25 years dating back to the classical work

of Eckhaus 1. He investigated for a continuous bifurcation to a spatially periodic state

how a given pattern with spatial variations in one direction (called one-dimensional pat-

tern in the following) goes unstable upon applying a compressional or dilatational force.

This instability, the Eckhaus instability, has since been studied theoretically for a num-

ber of pattern-forming systems showing a forward bifurcation, including Rayleigh-B6nard

convection 2-4 and the Taylor instability s. Experimentally this one-dimensional instability

has been studied first for the onset of electroconvection in nematic liquid crystals 6 and it

has then been investigated in detail very carefully for Taylor vortex flow 7.

For the case of a continuous bifurcation to a spatially and time periodic state in

one dimension the question of a modulational instability was addressed first for a purely

dispersive system (i.e. no dissipation) by Benjamin and Feir s, when they investigated how

water waves go unstable. Their analysis has been generalized by Newell 3,9-11 to include

both dissipation and dispersion. Later on in ref.12 this analysis was further extended by

considering the wavenumber band possible above onset of the instability and not only the

critical wavenumber as in refs.3, 9-11. In addition, it has been shown 13 that the Benjamin-

Feir-Newell instability is equivalent to the phase diffusion coefficient in the Kuramoto-

Sivashinsky equation becoming negative. Up to the present there seems to exist no clear-

cut experimental observation of the Benjamin-Feir-Newell instability in one-dimensional

patterns.

More recently there is an increasing interest in the spatial patterns formed near weakly

inverted bifurcations (which show a small amount of hysteresis), especially when this bi-

furcation is oscillatory in nature 14-2°. Motivated by these recent developments, which are

partially triggered by experiments on thermal convection in binary fluid mixtures 21,22, we

investigate here how the criteria for the Eckhaus instability and the Benjamin-Feir-Newell



instability change as one goes from a forward to a weakly inverted bifurcation.

reads

2. The Eckhaus instability for a weakly inverted bifurcation

to a spatially periodic state

The envelope equation for a weakly inverted bifurcation to a spatially periodic state

A : eA + 7A._: -4-flIAI2A- 6IA[4A (2.1)

where e, 3', fl and 6 are real and where/3 and 6 are assumed to be positive to guarantee

that the bifurcation is inverted and saturates to quintic order. The diffusion coefficient 3'

will also be assumed to be positive.

The time-independent version of eq.(2.1) allows finite amplitude, plane wave solutions

of the form

where

A_t = Aoe it_ (2.2)

IAol_,2 = _ 1-4- + _2 ]
(2.3)

In eq.(2.3) the upper (+) sign in the bracket refers to the physical branch of solutions,

which exists for a band of k values

2

7k2 < + (2.4)

whereas the lower (-) sign is associated with the unphysical branch of solutions.

To test for linear stability of the stationary solutions Aot (eq.(2.2)) against spatial

modulations, we proceed along the lines of ref.2 and write

A = Aot + Al(x,t) (2.5)

We obtain upon linearization in A1

A1 : cA1 + 7Alz_ - A1 ]A0]2(-2fl + 3 lA012) - _0_leA2_*2,k_,t_p_, + 26[A0[ 2) (2.6)



This equation allows for solutions of the form

A,(z,t) = A11(t)ei(k+M)_ + A12(t)ei(_-M)_ (2.w)

Setting All, A12 o¢ ext gives

A1,2 = -(7(k 2 + M 2) - _ + IA012(-2/3 + 3_1A012)) i V/472k2M 2 + ]A014(-/3r+ 261A0[2) 2

A1,2(M, k) has a relative maximum for

M* = k 2 - IA°14(-/_ + 261A°12)2
472k 2

and

(2.s)

(2.9)

IA014 12)2
A :e -IA012(-2/3 + 3glA012)+ 4_k_(-/_ + 26[A0 (2.10)

In deriving eq. (2.10), the positive sign was chosen in eq. (2.8) since it corresponds to the

larger growth rate. It is easily checked from eqs. (2.1), (2.9) and (2.10) that for 5 = 0 and

negative the classical result for a forward bifurcation 1'2 (which reads

k2 < -- (2.11)
33'

in the present notation) is obtained. Inserting eq.(2.3) into eqs.(2.9), (2.10) we find that

the finite amplitude solutions (eqs.(2.2, 2.3) with positive sign) of eq.(2.1) are Eckhaus

stable, i.e. stable against the growth of sidebands, provided

k s < _7+3--_76 1+ + 9--_-] (2.12)

Inequality (2.12) represents the stability domain for stable finite amplitude plane wave

solutions of eq.(2.1) that are stable against the Eckhaus sideband instability. Larger values

of the wavevector will lead to an instability. Comparison of inequalities (2.12) and (2.4)

shows that the Eckhaus stable range is smaller than the existence range of nonlinear plane

wave solutions of the type (2.2), (2.3). In analogy with the experimental observations e,7
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and with theoretical investigations2_for a forward bifurcation one canexpect the gain or

lossof roll or vortex pairs to occur for the Eckhaus instability. This expectation is based on

the fact that one has the same mechanism (a sideband instability) for both cases, namely

for the spatially periodic states formed for a forward and for a weakly inverted bifurcation.

3. The analog of the Benjamin-Feir-Newell instability

For a weakly inverted bifurcation to a spatially and time periodic state one has for

spatial variations in one dimension the envelope equation 16-2°,24,25

J = eA +TA** - fllAI2A- 6IAI4A (3.1)

where 7, fl, and 6 are complex and thus of the form o_ = a_. + ict_ and where fl,. < 0

and 6,. > 0 to guarantee that the bifurcation is inverted and saturates to quintic order.

Furthermore we have discarded nonlinear gradient terms in writing down eq.(3.1).

Eq.(3.1) admits spatially homogeneous solutions of finite amplitude

Ah = Aoe i'_t (3.2)

where

and

IA01L= 1± (3.3)

_v = -IA012(fli + 6ilA012) (3.4)

and where the (+) sign in the bracket of eq.(3.3) corresponds to the physical branch,

whereas the (-) sign is associated with the unphysical branch. In the spirit of refs.9-11

we investigate the stability of the spatially homogeneous solutions (eqs.(3.2)-(3.4)) with

respect to space-dependent perturbations, that is we look for solutions of eq.(3.1) of the

form

A(z,t) = Ah(t) + B(z,t) (3.5)
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Inserting eqs.(3.2)- (3.5) into (3.1) weobtain upon linearization in B

= _B + 7B_ - BlA012(2/_ + 3glA012) - A_oB*e_'"_(_ -4-2glA012) (3.6)

Using the ansatz

B = Bl(t)e + B,(t)e

and 2_ = w, + _2 one gets a closed system of equations for Bl(t) and B_(t).

(3.7)

Setting

B_(t) cx Bloe J't and Bz(t) cx B2oe _, we arrive at the following solvability condition for

)tl, 2 = -(Trk 2 -¢..-_ 2/_rlA01z + 3a_lA014)

:f: _/IA014((/_ -4-2g_lA012)_ + (/_ + 2_lA01Z) 2) -(_k 2 +_ + IA012(2/3_-4-3_,[A012))2
(3.8)

Upon replacing _ and _ in eq. (3.8) with the values given by eqs. (3.3) and (3.4), re-

spectively, analysis of eq.(3.8) shows that the spatially homogeneous solution (3.2)- (3.4)

is linearly unstable against spatially inhomogeneous perturbations of the type considered

here if

7i(/_i + 26ilA012) + 7_(/_ + 2g_lA0[ 2) < 0 (3.9)

Eq.(3.9) represents the analog of the Benjamin-Feir-Newell criterion for a weakly inverted

bifurcation. For 6,. = gi = 0 the case of the forward bifurcation 3,9-11 is easily recovered

from eq.(3.9)

+ < o (3.10)

As for the case of the forward bifurcation 9-11 , the terms in eq.(3.9) represent a competition

between the 'cooperative' (dissipative and diffusive) tendencies to generate an ordered

structure at q = q0 (the wavevector of the underlying structure such as for example rolls

or vortices) and the dispersive forces (dispersion and nonlinear refractive index), which try

to focus initial nonlinear wavetrains into pulses.

To investigate the modulational instability of plane wave solutions with a finite

wavenumber we proceed along the lines of ref.12. Eq.(3.1) has finite amplitude plane
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wave solutions of finite amplitude of the form

Ap = Aoe i(k*+'t) (3.11)

where

and

(3.12)

02: -_{k 2 -IA012(¢% + 6itA012) (3.13)

and where the (+) sign in the bracket of eq.(3.12) corresponds to the physical branch,

whereas the (-) sign is associated with the unphysical branch. To investigate the linear

stability of the finite amplitude plane wave solutions (eqs.(3.11)-(3.13)) with respect to

space-dependent perturbations is we look for solutions of eq.(3.1) of the form

A(z,t) = Ap(z,t) + B(z,t) (3.14)

We find that, linearizing in B, structurally the same equation for B is obtained (eq.(3.6))

as for the case of the spatially homogeneous solutions, except that now [A012 and w are

given by eqs.(3.12),(3.13)instead of eqs.(3.3),(3.4).

It is possible to find a solution of the resulting equation for B of the form

B(z,t) = a(t)e i(k'_+'lt) + b(t)ei(k_+'_t) (3.15)

provided kl + k2 = 2k and 021 "-_ 022 _--- 202. Introducing the abbreviations

aT : -e + 2/LIA012 + 3&.lA014 (3.16)

ai = 2/3ilA0] 2 + 36ilA014

(, = + 2<tA01:

(i= fli + 26/lA0] 2

(3.17)

(3.18)

(3.19)



we find for a(g) and b*(t) the equations

h = -((7,- + iTi)k_ + iwj + (a_ + i_i))a - (_ + i_,)A_b* (3.20)

b* = -((7; -iTi)k_ -iw2 +(a_-iai))b* -(_-i_i)A_2a (3.21)

Assuming the disturbances to be proportional to e )'_, we find that )_ has a negative real

part provided that

where

F_l + F_2)-a_ + Ncos(_O)

and

< o (3.22)

1

)'Y = (_ - _ -4- _(1_1 + P2)2(]_]1 - _2) 2 (3.23)

with

-_(F_ + F2)(E1 - E2)
tanO = 2 (3.24)

_(E_ - _)2 _(F_ + p_)2 + h 2

r_ =., +_k] +_j (3.25)

_j = 7,&_" (3.26)

A = IAol_lgl (3.27)

where j = 1,2. Comparing eqs.(3.22)-(3.27) with eqs.(3.14) - (3.18) of ref.12, we see that

there is a great similarity in structure. Further analysis of inequality (3.22) turns out

to be rather involved for the case of a weakly inverted bifurcation and is left to future

investigations. In closing this section we note, that eqs.(3.22) - (3.27) contain as a special

case inequality (3.9), as one sees after some algebraic manipulations.

4. Generalization to anisotropic systems

So far we have looked at envelope equations containing only spatial variations in one

spatial dimension. Now we generalize this to the case of spatial variations in two dimensions
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for systems which have an intrinsic (such as anisotropic liquids: nematic liquid crystals

etc.) or extrinsic (e.g. due to an external force) anisotropy as it occurs for example for

hydrodynamic instabilities in magnetic liquids in an external magnetic field.

In this case the envelope equation (2.1) for a weakly inverted bifurcation to a spatially

periodic state is replaced by

A= eA + 711A** + 712A,y +"/22A_v + _IAI2A - ,_JAI4A (4.1)

with 711,712, and 722 real.

An envelope equation for a forward bifurcation to a spatially periodic state has been

derived for electroconvection in nematic liquid crystals 2°. As for the case of the forward

bifurcation 2° one can diagonalize the terms containing second derivatives of the envelope

in eq.(4.1) by rotating the coordinate system and by rescaling the coordinates. Then

the derivative terms take the form of a two-dimensional Laplacian A2 and the resulting

envelope equation for a weakly inverted bifurcation to a spatially periodic state reads

A = eA + Z,/A2A + fllAI2A- 5IAI4A (4.2)

It is easy to show that the most unstable perturbations correspond to perturbations along

the plane wave and therefore all the steps we have outlined in section 2 for the Eckhaus

instability in one dimension apply. We therefore obtain for the band of Eckhaus-stable

wavevect ors

k_ + k_ < + 1 + VI+ ) (4.3)

where _ and 77 in inequality (4.3) denote the coordinates in which the spatial derivative

terms in eq.(4.1) assume the structure of the two-dimensional Laplacian.

For a weakly inverted bifurcation to a spatially and time periodic state in an

anisotropic system, eq.(3.1) is replaced by

(4.4)



where 711,712, and 72_ are complex and of the form 7kl = 7_1 + iT_l" For the envelope

equation (4.4) we can investigate the analog of the Benjamin-Feir-Newell instability along

the same lines as for the one-dimensional case in section 3. We find that the analysis goes

through and that inequality (3.9) is replaced by the requirement that the (2x2) matrix Ekt

i 7"

Ek, = 7kl(_i -4- 2_/IA012) -4-7kl(_ -4-2&JA012) (4.5)

must be positive to guarantee linear stability of finite amplitude plane wave solutions

against space-dependent perturbations.

This analysis might turn out to be useful in the near future, since an inverted bifur-

cation to traveling waves has been found recently experimentally for the onset of electro-

convection in nematic liquid crystals 27. In addition it has been predicted a few years ago

theoretically 2s , that the onset of thermal convection in nematics can also arise as a weakly

inverted oscillatory instability. We note that this calculation has been done for homeotropic

alignment of the director. The preferred direction in the plane is provided by the external

destabilizing magnetic field, which is applied in a direction parallel to the nematic layer.

Thus the planar horizontal symmetry is not broken by the orientation of the director due

to surface treatment as in the planar configuration studied in electroconvection, but broken

externally by the direction of the external in-plane magnetic field.

For the case of a forward oscillatory bifurcation, the condition that the matrix in

eq.(4.5) must be positive for stability is replaced by the requirement that the (2x2) matrix

_kl i r= 7k_fli + 7k,fl," (4.6)

must be positive for stability, which is a direct application of a previous general theoretical

result by Newell 1° to a real physical system, namely electrohydrodynamic instabilities in

nematic liquid crystals. Envelope equations for a forward bifurcation to traveling waves

have been discussed very recently 29 in an analysis of experimental results on electroconvec-

tion in nematics a°, where a transition from traveling to standing waves could be achieved
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by modulation.

5. Summary and perspective

In this note we have discussed the analogues of the Eckhaus and the Benjamin-Feir-

Newell instability for a weakly inverted bifurcation. In addition, we have generalized these

criteria to the case of anisotropic liquids such as nematic liquid crystals.

From an experimental point of view the next step could be the investigation of the

Benjamin-Feir-Newell instability for traveling waves in thermal convection in binary fluid

mixtures, which are well documented for the upper (stable) branch of the hysteresis loop.

This will allow a test of the criterion given here, provided one choses a value for the

separation ratio such that the size of the hysteresis loop is sufficiently small and thus an

envelope equation is applicable. To test the criterion given for the Eckhaus instability for

a weakly inverted bifurcation to a spatially periodic pattern one could also study binary

convective mixtures. For such mixtures in a porous medium a regime of separation ratios

has been found over which the bifurcation is expected to be inverted 31,14 For the case

of anisotropic fluids such as nematic liquid crystals, it will be most interesting to see

under what circumstances the bifurcation to the stationary branch is actually forward or

inverted. In the latter case, which has been observed for the onset of electroconvection a2,

one could test the criterion presented here for the Eckhaus instability near a weakly inverted

bifurcation to a stationary pattern.

Note added: After submitting this paper for publication, we became aware of ref.33.

This paper contains in eq.(1.5) implicitly our criterion (eq.(3.9)) for the analogue of the

Benjamin-Feir-Newell instability for a weakly inverted bifurcation. Due to the scaled form

of eq.(1.1) in ref.33, however, it is not possible to go through the tricritical point from

the weakly inverted case to a forward bifurcation. In our description this can be done

straightforwardly (compare section 3).
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